Why (a) PCA?

3D model of ellipsoid and its three principal components

A principal component analysis is a way to reduce dimensionality of a data set consisting of numeric vectors to a lower dimensionality. Then it is possible to visualize the data set in three or less dimensions. Have a look at this use case. I’ll try to explain the motivation using a simple example.

Think of a very flat square (e.g. 1x1x.05) in a three dimensional space. What you see of this cuboid when looking at it from a specific angle while assuming perspectivic visual indicators away is basically a 2 dimensional projection of it. From one angle it looks like a rhombus, looking straight from the edge side all you see is a line-like shape. So obviously the representation offering the most information about this cuboid is the one you see when looking at it perpendicular to the main surface. Continue reading

Visualization of voting behaviour in the 17th German Bundestag

Click to get to the interactive 3D scatter plot with labels (PCA plot)

(Attention: The calculations and analysis are not biased by my political views – but the interpretation of the results might be and their verbal formulation certainly is … ;)

About a week ago I came across an article titled “How divided is the Senate?” by Vik Paruchuri where he uses a method called principal component analysis (PCA) to visualize the closeness of votings given by senators of the 113th Congress of the USA. I immediately fell in love with the idea behind this article as well as the method applied – which was a great opportunity to revise some statistics and alebra basics. And because (pretending) transparency is a major foundation of a modern democracy, full detailed word by word protocols of every meeting of the Bundestag are published as PDFs and text files on their website. So I downloaded all those protocols for the 17th Bundestag, extracted the votings and loaded the votes into a data frame. That was quite a drag because judging from typos (Sevim Dadelen, Sevim Dagelen, Sevim Dagdelen, …), different name versions (Erwin Josef Rüddel, Erwin Rüddel) and line breaks within the longer names like Dr. Karl-Theodor Freiherr von und zu Guttenberg (his title is gone, so the name became a tad handier by now) those text files where manually sanitized PDF convertions of live transcripts. I’ll spare you the details – but getting the data finally right took quite some effort.