The tf-idf-Statistic For Keyword Extraction

tf-idfThe tf-idf-statistic (“term frequency – inverse document frequency”) is a common tool for the purpose of extracting keywords from a document by not just considering a single document but all documents from the corpus. In terms of tf-idf a word is important for a specific document if it shows up relatively often within that document and rarely in other documents of the corpus. I used tf-idf for extracting keywords from protocols of sessions of the German Bundestag and am quite happy with the results. Given that I was dealing with (so far) 18 documents, together containing more than one million words which would have to be aggregated for the term frequency, then outer joined and then fed to the formula I was first a bit worried about how R would perform. To my surprise the whole processing from reading the files from disk to the final table of tf-idf-values took about 8 seconds. That’s not  bad at all.

Continue reading

Visualization of voting behaviour in the 17th German Bundestag

votings

Click to get to the interactive 3D scatter plot with labels (PCA plot)

(Attention: The calculations and analysis are not biased by my political views – but the interpretation of the results might be and their verbal formulation certainly is … ;)

About a week ago I came across an article titled “How divided is the Senate?” by Vik Paruchuri where he uses a method called principal component analysis (PCA) to visualize the closeness of votings given by senators of the 113th Congress of the USA. I immediately fell in love with the idea behind this article as well as the method applied – which was a great opportunity to revise some statistics and alebra basics. And because (pretending) transparency is a major foundation of a modern democracy, full detailed word by word protocols of every meeting of the Bundestag are published as PDFs and text files on their website. So I downloaded all those protocols for the 17th Bundestag, extracted the votings and loaded the votes into a data frame. That was quite a drag because judging from typos (Sevim Dadelen, Sevim Dagelen, Sevim Dagdelen, …), different name versions (Erwin Josef Rüddel, Erwin Rüddel) and line breaks within the longer names like Dr. Karl-Theodor Freiherr von und zu Guttenberg (his title is gone, so the name became a tad handier by now) those text files where manually sanitized PDF convertions of live transcripts. I’ll spare you the details – but getting the data finally right took quite some effort.

Continue reading